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. Many communication and control systems employ sigral formats that involve
o some form of periodic processing operation. Familiar examples are signails
' ’ produced by scaplers, scanners, multiplexers, or modulators. Very often
these signals can be modelled as cyclostationary processes, i.e., processas
whose statistical properties, such as mean and autocorrelation, £luctuate
periodically with time. Filters designed tc extract signias of this type
: from a noise background can exhibit dramatically improved performance
when: the periodic nacure of the statistics are teken into account, rather
‘ than using the more conventional "time-average' statistical approach.

' Some technijues for solving for the optimum filter and a video signal
1 example are discussed.
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I. Introduction:

A random signal process which is produced by a periodic sampling,
scanning or synchronous multiplexing operation can often be modelled
by a process which exhibits periodicity in its mean and autocorrelation
functions. A process, x(t), is said to be cyclostationary in the wide

sense (with period T) if
- | E[x(t)] = E[x(t + T)] )

) kxx(s, t) = Efx(s)x*(t)] = kxx(s + T, t+T) (2)

for all s and t. Bennett [1] introduced the term, 'cyclostationary",

-

to denote this class of processes in his treatment of synchronously
timed pulse sequences used in digital data transmission. Other investi-
gators [2]-[5] have used terms such as 'periodically stationary", ‘peri-
odically correlated", and "periodic nonstationary" to denote this same

class.

One important example of a cyclostationary process .s the synchro-
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nous pulse amplitude modulation (PAM) signal. Assuming that the pulse

amplitudes {ak} form a stationary sequence of random variables, we have

x(t) = s(t - kT)
kz-, % (3)
Efa,] = a

for all k
Efay ,p8y] = oy
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this case the mean and autocorrelation are given by (6]

E{x(t)] =a ] s(t -kT)

ks-o

ko (t* 1, 8) = ) ap Q(t, T + mT)

me -

o

where q(t, 1) ¢ ] s{t +1-KkT)s(t - kT) (4)
A=~

By inspection, the expressions in (4) are periodic T in t and hence the
PAM signal is a cyclostationary process. Typically, the pulse amplitudes
could be the result of uniformly sampling a wide-sense stationary process.
For example, the output of a conventional sample-and-hold device can be
represented by (3) where s(t) is a unit ampiitude rectangular pulse of
width T. Other forms of pulse modulation such as frequency-shift keying
(FSK) and phase-shift keying (PSK) will also yield cyclostationary processes {7].
The conventional formats for time-division and fcequency-division multi-
plexing of signals, and video signals generated by rectangular scanning
of a two-dimensional field [9] provide additional examples of cyclostationary
processes.

In the communication system examples cited above, it is clear that
the receiver used for demultiplexing or reconstruction of the signal into
its original format will require accurate timing information for satisfactory
operation. This information is normally supplied by inserting synchronizing
or framing pulses or by superimposing some other form of periodic signal
on the random signal process. Another function of the receiver is to

remove, to the extent possible, the effects of noise interference. It is
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of interest to determine the amount of improvement in filtering that
results from the cyclostationary character of the received signal process
and employing filters with time-variable elements whose periodic fluctua-
tions are '"locked in' tc the fundamental period of the cyclostationary
process. We have obtained solutions for optimum periodically-varying
filters and expressions for improvement in performance over that obtainable
by the best time-invariant filters. The receiver structures implied by
taese solutions have a form dictated by the choice of representation used
for the cyclostationary process. Two representation techniques which have

been found generally useful are briefly presented in the following section.

I11. Represgntation and Properties of Cyclostationary Processes:
\

We say that a process has a harmonic representation when expressed

in the form

x(t) = ) a (t) exp [j21¥E (5)

nu-o

where choosing

an(t) = J v(t - 1) exp [_j2ﬂ¥T] x(t) dt

v(t) = %F sin 2%— (6)

makes the mean-squared value of the difference of both sides of (5) vanish.
Generation of the sequence of bandlimited random processes, {an(t)), is
illustrated in Fig, 1. If x(t) is cyclostationary, then we can show that

(an(t)} is jointly wide-sense stationary1 and we define:

lOzura [5] has presented a discussion of harmonic representation; however,

he observes only that the individual terms in (5) are wide sense stationary.

They are not jointly wide sense stationary, as the coefficient processes
are, and this point has important consequences in the estimation or
filtering problem.
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(s - t) = Els (s)a ()] (7)
with the result that
2n
k(s t) = ,);Zrn_(s - t) exp [j T (ns - mt)] (8)

There are certain properties of the infinite-dimensional matrix,

z(+), or its Fourier transform R(*) which will be useful in the estimation

problem.

R(f) is bandlimited to the frequency interval, |f| < ?!I" . This
is because the {an(t)} are similarly bandlimited.

x(t) is a wide-sense stationary process if, and only if, r(-)
is a diagonal matrix. This can be seen by direct substitution

into (8).

Let x(t) be the result of a time-invariant filtering operation on

a cyclostationary x'(t), with representation R'(:), given by

x(t) = Ih(t - 1) x'(t)dx

then we have
Ryn(£) = V() H(E + ) H'(£ « ) RY () 9)

vhere V(f) is a rectangular function of width, 1/T, which is the
Fourier transform of v(t) in (6). Using this result with H(-) corre-
sponding to an ideal lowpass filter with cutoff at W, we see that a
bandlimited process, x(t), can be represented by a finite matrix of

order M where M < 2 TW.

Let x(t) be derived from a cyclostationary x'(t) where an uncertainty
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in the time origin or 'phase" of the process has been introduced,
i.e., let x(t) = x'(t + §) where & is a randon variable with proba-
bility density function, PG(')’ The modification in the representa-

tion is expressed by
Roa(f) = Ps(5D) RY () (10)
vhere PG(') is the Fourier transform of pé(-) so we know that
Ps(P) < Pgl0) = 1 (11)

In particular, if & is uniformly distributed over the interval [0, Tj,
then P(%) = 0 for n ¥ 0 and R(f) is diagonal. Thus if a cyclostationary
process is completely 'phase randomized" it hecomes a stationary pro-

cess. Its autocorrelation function woulid be

' ar
k(1) = ‘Z‘ o (1) exp [§ 2n 57}
T
-3 J Kyog (€ + T, t)de 12)
0

which is simply a time-averaged version of the nou:stationary correlation.

An alternative form of representation which affords a simpler solution

to the filtering problem in many cases of practical interest is the time-

series representation. This representation has the form

M )
x(t) = ¢, (t - nT) (13)

where the {‘i(t)} are "doubly-orthogonal" in the sense that

j ¢ (t - n‘r)o; {t - nT)dt = sijsm (14)
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and the process is represented by the random variables

¥ o 3,1
3

. = * - £
3 . i I x(t) 5 (t - nT)dt 15) :
3 - f:
3 This leads to a representation for the autocorrelation given by i
7) .. ;;
3 - ij _ * - s 3
ky(so ) = T T TAS ¢i(s -nT) ¢ (t - M) (163

nmij e

3

where i

ij * %

An-m E[anich] %

® &

! 3

. _ . * . ¢

! J Lxx(t +nT - wl, 1) ¢i(t) ¢j(t)atdr 17) ?

;

The time-series representation is particularly appropriate for the %

various forms of digita' pulse modulation. For example, in the simplest %

case, PAM with {s(t - nT)} forming an orthonormal sequence, we have M = 1 %

and

65 (1) = s(t)

o T 3 (18)

and the én-m matrices in (17) are simply the scalar correlation values of
the pvlse amplitudes as given in (3).

A mooe general application of the time-series representation for an
arbitrary cyclostationary process results from a Karhunen-Loeve expansion
of the process over each T second interval [6], using the same basis

functions for each interval. This has proved particularly effective for

the random videu process described later.
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1II1. Continuous Waveform Estimation:

One of the estimation problems of interest is tlie problem of
filtering to reproduce a faithful replica of the signal waveform, at
each point in time, in the situation where the received waveform has
an additive noise component. In the following, we consider the case
where there is no channel dispersion and the noise is white, although
more general results with these restrictions removed, follow directly.

Accordingly, the estimation problem we consider here is evaluation
of the performance of the noncausal, periodically-variable filter
which gives least mean-squared error reconstruction of a cyclostationary
signal process with additive white noise having spectral density, No'

The impulse response function, h(*, ¢), for the filter which minimizes

I1(t) = E[{x(t) - I h(t, s)z(s)ds}?] (19)

where z(t) is signal plus white noise, must satisfy the orthogonality

condition [6]

J kxx(s’ o)h(t, o)do + Noh(t, s) = kxx(s’ t) for all sand t

(20)

Substitution of (20) into (19) and rearranging terms yields a compact

expression for the minimum mean-squared error.

Imin(t) = Noh(t. t) (21)
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The mean-squared error in (21) is periodic T in t. As a performsnce

:‘unctional. we solect the value of Imin(t) averaged over one period, i.e.,

N T
J, = -,-l?- I h(t, t)dt (22)
0

Using the harmonic representation scheme of (5), the optimum fiiter
can be interpreted as an estimator of the jointly wide-sense stationary
sequence, (an(t)}. This is accomplished by forming the corresponding
sequence of processes for the received signal by means of the structure
shown in Fig. 1. The estimate of the n"h process is a linear combination
of time-invariant operations on the received signal processes which is
ther multiplied by exp (j 2« -“Tt-] to form one component of the filter output.
The structure of this estimator is shown in Fig. 2 and the overall filter
is obtained as a cascade of the structures in Figs. 1 and 2. The filter

is realized as a bank of input and output modulators interconnected by a
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matrix of time-invariant, bandlimited -!.-l: » filter paths. We can then

write the impulse responss as
hte, ) = DT gy e - o) em (3 5 (nt - ko)) (23)
n

Now using (23) and (8) in (20) and performing the integration, the coeffi-
cients of the exponentials in t and s are equated and the orthogonality

condition is satisfied by a £(*) matrix whose Fourier transform is the

.~ . i i .
) S ik i kst o B B 0 g Bttt 88 s

solution of ] 3

(6 (R%(H) + N1 = R(9); f| < 3¢ (24)

where B_‘( *) denctes the conjugate transpose of R(*).




i o P Mot 3

'i”‘

AV TAL ,

. Mt B R R Sate® T ubahRAP Widatint b/ L e AR S M A
L] TR TR VIR o i : ~ A ERCTI N AR

Using (23) in (22), the expression for optimum performance becomes

Jo = N, ‘2‘ 8, (0) = N, J tr G(f)df (25)

To evaluate the performance of the best time-invariant filter for
a cyclostationary signal relative to that of the best periodically-
variable filter, we use h(t - s) in (19) and find the condition which
minimizes the time-averaged value of I(t). The constraint of time-
invariance is equivalently imposed by requiring that tne g(+) matrix
for (23) be diagonal. The riew orthogonality condition has the simple

solution,

Rnn(f)
Sm® = B, - (26)

and since G(-) is diagonal, the filter trunsfer function is
n
H(f) = ,{‘ 6 (F P (27)

Taking into account the bandlimited nature of Rnn(f) in (26), the sum
in (27) can also be written as
Za(f

K(f
H(f) = =2 =
n K + N
,Z‘ Ran(£- ) + Ny °

(28)

The expression (28) is the familiar solution for the noncausal Wiener
filter for a stationary signal with power spectral density K(f) in white
noise [6]. Now referring to (12), we see that K(f) is actually the power
spectral density for the (stationary) phase-randomized version of the

cyclostationary process. Thus we make the interesting observation that
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the best time-invariant filter for the cyclostationary process is identical

to the best filter for the phase-randomized version of the process. Further-

more, this filter is the result of simply disregarding the crosscorrelation
among the {an(t)} processes in making the estimation. The performance

functional for the time-invariant filter is

Jy = Nh(0) = N
1= RO = % :zx_l R_(£-D) o N (29)

n
Rnn(f- '.l-.) daf

When the time-series reprssentation approach (13) is used, the optimum

filter exhibits a similar representation.
hee, s) = JITL HIP o (s -2T) o2(t - kT) (30)
’ tkpq -k "q P

Substituting (30) and (16) into the orthogonality condition (20) and
performing the indicated integration by making use of (14), we obtain an
equation whose terms have the same form as (16) =nd (30). Equating coeffi-

cients in this equation, the orthogonality condition is satisfied by the

solution of

E An--ﬂn‘nogn'éﬂ‘ for all n (31)

where the matrices An and yn in (31) have elem.:-:s as indicated by the
superscripts in (16) and (30).
The first term in (31) is a discrete convolution, so z-transform

techniques can be used to express the solution. To this end we define

B(f) = [ A, exp(j2mTe]
n

L) = ] H exp[j2mTe) (32)
n

B M Wt s pmon 11 A
e L 8k
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and (31) is expressed as

B(£)L(£) + N L(f) = B(f) (33)
The optinmum fiiter is given by

1/2T
H =T { L(f) exp[-j2nnTEfldf (34)
-n J -
~1/2T

where L(£) = [B(£) + N_I]"'B(£).

The solution for the optimum filter (30) indicates the structure of
filter as outlined in Figure 3. The structure involves a bank of time-
invariant filters whose outputs are sampled every T seconds. The apprc-
priate linear combinations of these samples are formed by the time-
invariant, multiport, sampled-data filter, characterized by the gn matrices,
and the output signal is reconstructed by impulsing a similar bank of

output filters. The performance functional for this filter is given by

1/2t

N .
L (f)df (35)

[¢]
J = —,i.—tr

o =N

H
-0 0

e~

-1/2T

Solutions for specific examples related to time-division and
frequency-division multiplexing of an arbitrary number of independent,
band-limited signal processes have been presented [8]j. In the following
section, we illustrate the application of the time-series method of
representation for finding the optimum filter for the random video

process.
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IV. Video Signal Process:

We assume that the video signal results from scanning a two-
dimensional visual pattern using the conventional rectangular raster
(without interlace). The visual pattern is mcdeled with a two-
dimensional random step function giving a stationary autocorrelation
with exponential form which is separable in the horizontal and vertical
directions [9]. Neglecting frame-to-frame correlation, the scanner
output is a cyclostationary process with period T equal to the line

scan interval. Consider any two time instants t, and t, where t

1 2 2
occurs in the mth line after the one which contains t,. Then the
normalized autocorrelation of the scanner output is given by

kex(t1s tp) = 0" expl-2nf |t) - t, + uT|] (36)

where the parameter fo characterizes correlation in the horizontal
direction and p is the linc-to-line correlation.
For the time-series representation (13), we choose the ¢i(t) as the

normalized solutions of
T

J eXP['Z“f6!t - Sl]¢i(5)d5 = A4, (t) for 0 <t <T
o (37)

and we are, in effect, wmaking a separate Karhunen-Loeve expansion over

each line-scan interval. The eigenfunctions in (37) are cosine and sine

functions [6] whose frequencies, respectively, are given by the solutions

of

tan ani = fo/fi and tan ani = -fi/fo (38)
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The eigenvalues are

1 2,-1

(39) |

N . 1 '
and the matrix sequence characterizing the autocorrelation (16), (17)

'

has an especially convenient form. T
A, = plmlé. ; : . (40)

where A is a diagonal matrix whose elements are the,Ai. B(f) in (32)

is obtained by summing the double-sided geometric series and we get

t H
. 2 ;
1 -
3(f) = 7 : 2 A
(1 - p)" + 4p sin” oTf '

(41),

Solving the orthogonality condition (33) for' the filtering.problem and

evaluating the performance functional (35) gives the result.

N o . i1/2
= 2 lte 1-0
Jo = 7 g Ay [y ¢ Ny [1-p]”"if"c [1+o}}l

(42)

The performance (42) has been numerically evaluated fbf the 'specific case

1

of a 500-line, square format assuming that the visual pattern has the

same correlation in-horizontal and vertical directions. This requires

p = exp[-ZﬂfoT/SOO]. Assuming approximately equal resolution requirements

in horizontal and vertical directions, the'essential bandwidth of the
signal is 500/2T so we take § = T/SOONo as a measure of the signal-to;

noise power ratio. 'Results for various values of p and § are shown in

Figure 4.
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Multipliers Ideal Lowpass

Filters

P o

| - )( *11 v(f) p——tpn—O a, (t)

x(tz —

‘T-— exp[-2n -’-‘.i.t- ]
— —

o 0 0 o

F— V(£f) = 1 for |f| < 1/2T

3
3

%

P

= 0 for |f] > 1/2T

i,

A RS e n 8 L]

g Fig. 1. Harmonic representation.

CE e

by (t)
(G (£)]

RREEN

exp[j2n 'v'E'-l

bk(t) =

: |

4 Fig. 2. Estimation using harmonic representation
, of received signal.

v(t - t)exp[-j2x ’-‘.-l.-]z(r)dr = a (t) +n ()
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Fig. 4. Calculated performance for the video signal filtering problem.




